Approximating a point using least-squares best-fitting polynomials

1. A noisy sensor is reading speed at a rate of once every five seconds, and the reading is in meters per second. The readings are as follows:

$$
0,0,0,0,-0.35,1.84,1.56,-1.12,-4.70,2.95,3.77,1.97,5.81,8.11,10.62,11.88,17.45
$$

Use the five-point approximation shown in the course slides:

1. For best-fitting least-squares linear polynomials:

$$
\begin{aligned}
& a_{1}=-0.2 y_{n-4}-0.1 y_{n-3}+0.1 y_{n-1}+0.2 y_{n} \\
& a_{0}=-0.2 y_{n-4}+0.2 y_{n-2}+0.4 y_{n-1}+0.6 y_{n}
\end{aligned}
$$

2. For best-fitting least-squares quadratic polynomials:

$$
\begin{aligned}
& a_{2}=\left(2 y_{n-4}-y_{n-3}-2 y_{n-2}-y_{n-1}+2 y_{n}\right) / 14 \\
& a_{1}=\left(26 y_{n-4}-27 y_{n-3}-40 y_{n-2}-13 y_{n-1}+54 y_{n}\right) / 70 \\
& a_{0}=\left(3 y_{n-4}-5 y_{n-3}-3 y_{n-2}+9 y_{n-1}+31 y_{n}\right) / 35
\end{aligned}
$$

These coefficients are found by explicitly calculating $\left(V^{\mathrm{T}} V\right)^{-1} V^{\mathrm{T}}$ and multiplying them by \mathbf{y}. You do not have to memorize these coefficients: if needed, they would be given to you on an examination.

Starting with the fifth point, approximate the value at the point, at the point half a step into the past, and at the point one step into the future.

Answer: Starting with the $5^{\text {th }}$ point, assuming all previous values are zero, and rounding the first two quadratic approximations to two points beyond the decimal, we have for $\delta=0, \delta=-0.5$, and $\delta=1.0$:

$$
\begin{aligned}
& -0.21,0.964,1.602,0.32,-2.886,-0.702,2.19,3.504,5.968,6.994,10.024,12.604,16.184 \\
& -0.175,0.7975,1.354,0.3365,-2.303,-0.5, \quad 1.7655,2.7715,4.966,6.376, \quad 9.032,11.3725,14.8315 \\
& -0.28,1.297,2.098,0.287,-4.052,-1.106,3.039,4.969,7.972,8.23,12.008,15.067,18.889 \\
& -0.31,1.54,1.88,-0.70,-4.88,1.44,4.79,3.04,4.51,8.22,11.03,11.90,16.94 \\
& -0.19,0.87,1.39, \quad 0.21,-2.55,-0.23,2.09,2.71,4.78,6.53,9.16,11.28,14.93 \\
& -0.63,3.312,3.088,-3.278,-11.022,6.374,12.154,3.334,2.852,12.53,15.548,12.592,21.534
\end{aligned}
$$

2. Plot the points with noise, and then plot the least-squares best-fitting polynomials that are used to estimate the the values at the last point assuming the first noisy signal was taken at time $t=0$.

Answer:

3. With as much noise as was introduced into the data in Question 1, would it make more sense, or less sense, to use more points in finding the best-fitting least-squares polynomials?

Answer: The errors introduced into the data is quite significant, so more points would definitely give a much better approximation by eliminating some of that error.

Acknowledgements: Harshil Shaw and Aaran Muraleetharan for pointing out the word "linear" was repeated when the second use should have been "quadratic" in Question 1.

